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Abstract. A theoretical interpretation of the transition sequences in the [P(CH3)ll»
{CuCly)) - (CuBrg), solid sofution is proposed. Each pure compound [P(CH3)4]2CuCly and
[P{CH3)4]2CuBry4 presents its own transition sequence which contains an incommensurate phase
and different locked phases. In the solid solution with x = 0.12, phases characteristic of the two
pure compounds are observed in the sequence. The interpretation of this phase diagram is based
on a coupling of the two order parameters, each of them corresponding to their own phonon
branch. This coupling results in a re-entrant symmetry for one of the two order parameters, in
agreement with experimental data,

1. Introduction

Two questions arise when undertaking a study of phase transitions in A;_,B. solid solutions.
The first concerns the homogeneity of the sample. As an example, if aggregates of B
are present within the A matrix, then the properties of the sample can be described as
a superpositicn of the properties of the two pure compounds. The second question is
connected with the occurrence of long-range ordering. There presumably exists a limiting
concentration x; such that, for x > x, long-range correlations take place between the
molecules of the chemical species B. Then for x > x. the solid solution behaves like a pure
crystal with respect to the properties of both species. For x < xp the sample will behave
as a pure crystal for the properties of only species A, B acting as impurities.

The phase diagram of the [N(CH3}4],CuBr,Cls_, solid solution gives an example of
such a homogeneous compound where long-range ordering is present [1]. The homogeneity
is demonstrated by the continuous dependence of the transition temperatures on composition.
This phase diagram resuits from competition between the order parameters of the two pure
salts. For some composition ranges, ordering occurs simultanecusly in both symmetry
directions, i.e. for the two order parameters. _

Analogous to the previous compound, [P(CH3)4]2(CuCly); - (CuBrs), where x = 0.12
is also an interesting example of a solid solution. It exhibits a complicated sequence of at
least six phases between room temperature and 110 °C (table 1) [2]. Some of these phases
present the same space group as in the pure bromide and others the same space group as in
the pure chloride compound. The case of the two pure compounds is described in section 2

1 Permanent address: Institute of Crystaliography, Academy of Sciences, Leninski Precinct 59, 117333 Moscow,
Russia.
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Table 1.  Schematic representation of phase transition sequences in the compound
[P(CH1)4]2(CuCly);1-»(CuBry), with different x{x = 1 is the pure Br compound; x = 0 is
the pure Cl compound).
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of the present paper where we give the phenomenological interpretation of the transition
sequences and compare them with available experimental data.

In the solid solution with x = 0.12, despite the low value of x, long-range ordering
occurs simultaneously in the a and ¢ directions which are characteristic of the CuCly [3] and
CuBr4 [4] species, respectively. Consequently a phenomenological theory of the transition
sequence in this compound must take into account the order parameters of both the two
pure salts. All through this work we use the language of lattice dynamics. The term ‘soft
mode’ is used because it gives an understandable description of the different situations.
Nevertheless, one should keep in mind that the mechanism of the transition is perhaps not
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of the displacive type. The phenomenological theory presented in section 3 for the solid
solution applies to a pure crystal where two sets of order parameters are in competition.

Finally a short discussion, containing an analysis of the results obtained within the
present theory, is given in section 4.

2. Phenomenological theory of the transitions in the pure compounds

2.1 [P(CH_;)‘;]Z CuBr4

From DSC measurements it was found that the high-temperature phase transition at about
135° in [P(CH3)4]2CuBry was either of first order or continuous but close to tricritical point.
Close to this temperature we obtained evidence of an intermediate incommensurate phase
extending over a temperature range of about 3 K because of the presence in the free-energy
expansion of a Lifshitz term [4].

Now we wish to improve the phenomenological treatment of phase transitions in this
compound so as to interpret the whole transition sequence which' includes four different
phases. To achieve this we shall see that it is sufficient to consider the single soft optical
branch of the normal vibration spectrum.

“The symmeiry of this branch is unambiguously determined since the symmetry group of
the low-temperature phase with the same translational symmetry {@bc) as in the initial phase
Pnma (Dég) is known. Itis P2;/nl1 and it is induced by the representation Bs;(yz) of the
point group Doy, (see, e.g., [5]). Therefore the coordinate of the mode with the wavevector
g = Q transforms with respect to the representation Bi;. This determines the symmetry of
the corresponding branch. From the tables of space groups of commensurate phases for the
initial phase of the space group Dif [5], it follows that the possible space groups of the
phase with g, = % (g = g.c*) are P12, /c, or P2;ica (also possible, but less probable, is
the group Plcl). The first of these possibilities corresponds to the experimental data (see
table 1).

The soft branch is represented by the simple expression

a(g) = A+«(g" — BY (1)

where « is the elastic coefficient of the normal vibration associated to the branch, and A
and B are coordinates of the minimum of the branch (1) (figure 1{a)).

The phase diagram obtained using the method proposed in [6,7], is shown in figure 2.
Along the axes we plot the parameters A and B of the soft mode, i.e. of the minimum of
the soft branch, in the dimensionless variables

x=B/Q  y=—A/kQ" . @

Here Q has the dimension of a wavevector the value of which can be chosen arbitrarily. It
is convenient to take it equal to the value of the Brillouin zone boundary @ = % {in units
of ¢*). « characterizes the steepness of the branch in the vicinity of the minimum (see
figure I{a)). )

Each commensurate phase, i.e. the phases corresponding to rational values of the
wavevector gy = m/ 1, where m and ! are integers, can be characterized by the dimensionless

parameter

« = (&l/k 0%k Q" /28Y ! 3)
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Figure 1. (a) Optical soft branch, Figure 2. Phase diagram on the (x, y) plane (see equation (2) in the
ie. the dependence of the elastic text) for the pure Br compound. The phase trajectory with decreasing
coefficient & ~ @® (w is the rtemperature is shown by the broken arrow. The wavevectors of the
frequency) on the wavevector ¢ (in  commensurate phases g = 1/, are indicated.

units of 27 /£) along the c* direction

for the pure Br compound. (b)

Optical soft branch showing the

dependence of a(g) with ¢ (in units

27 /a) along the a* direction for the

pure Cl compound.

which involves the coefficients of the thermodynamic potential for the rational values of
g =m/l

& = o;0° + Bp* — erfp” cos(2g) (4)
where the elastic coefficient ¢ depends on g according to equation (1):
o = A+ x(g? — BY?

and p and ¢ are the amplitude and phase of the two-component order parameter, i.e. the
coordinates of the two-degenerate mode of the branch (@(g) = w(—¢q)). Note that, the
larger ¢ is, the wider at a fixed value of O is the range of existence of the corresponding
commensurate phase in the phase diagram of figure 2 (see also figure 3).

In figure 2 we use the value €3 = 0.3. The phase trajectory is chosen in such a way
as to obtain the correspondence first to the observed sequence of phase transitions, second
to the approximate ratio of temperature ranges of existence of the incommensurate phase
(3 K) and of the commensurate phase with g = % (204 K), and third to the dependence of
the misfit parameter on temperature T in the incommensurate phase {2,4] (g ~ 0524 at T;
and at the lock-in transition it jumps from g ~ 0.517 to g = %).

2.2, [P(CHz )4 ]2 CuCly

Table 1 also shows the phase transition sequence in the compound [P(CHj)4]>CuCly.
According to tables in [5], such a sequence of phase transitions can be described by a
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Figure 3, Phase diagram on the {x, y) plane (see equation (2) in the text) for the pure Cl
compound. The broken arrow indicates the phase trajectory with decreasing temperature.

singte optical branch. The mode with ¢ = 0, which belongs to this branch, can transform
with respect to the representation either By, (yz) or A, (xyz) of the point group Da,.
To these representations correspond the space groups P2;/nll and P2,2,2;, respectively
(with the equitranslational cell abe). However, up to now, no transition to a low-temperature
equitranslational phase has been experimentally evidenced. _

The expression for the soft branch w(g) can be presented in the same form as before
(equation (1)), but now all quantities are different (e.g. ¢ = g.a”). The dependence a{g)
is shown schematically in figure 1(b).

In figure 3 the phase diagram comresponding to this branch is given. It is plotted in the
same way as for the diagram in figure 2. We use the following values of ¢ (see (3) for a
definition of ¢/} 63 =1,6, = 0.2, €4 = 0.02 and ¢5 = 0.1.

This choice is connected with the slope of the phase trajectory which corresponds to
the experimental dependence of the misfit parameter on temperature in the incommensurate
phase [3] (g = 0.18 at Tj; it increases to g =~ 0.26 at T, and jumps to the value g = %). The
phase trajectory crosses the commensurate phase with g = %; however, this phase can be
very narrow and on the scale of figure 3 has almost no width. The trajectory also crosses
the commensurate phase with g = §. The value e, = 0.02 was chosen to be so small that
this phase is narrow in the diagram. However, in principle, this phase must be observed in
experiment as some narrow plateau in the dependence g(T).

The space group of the phase with ¢ = Ji’ in accordance with the tables in [5] can be
either Pra2y or P12;/al. In the first case the electric field along the z axis must broaden
the range of existence of the phase with g = f;. Then this phase must be more reliably
observed in experiment.

3. Phenomenological interpretation of the transition sequence in a solid solution

On the basis of table 1, one can guess that in solid solution with x = 0.12 a condensation
of both order parameters, i.e. of the Cl and of the Br compound, occurs. In the framework
of our phenomenological interpretation, two soft phonon branches which are characteristic
of the pure compounds simultaneously exist. Note that from symmetry considerations the
symmetry group of a mixed phase contains only the common elements of the two original
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symmetry groups. In this respect, as the low-temperature phase of the solid solution with
x = (.12 is the same as in the pure chloride compound, the influence of the bromide salt
no longer applies in this temperature range. This means that the soft branch responsible for
the ¢ direction ordering condenses at high temperatures but in the low-temperature range
the condensation of this mode no lenger takes place. This can happen if the corresponding
soft mode first decreases (and therefore the elastic coefficient becomes negative) and then
increases (and the elastic coefficienf again becomes positive), We suppose that this can
occur owing to the interaction of the two branches of the crystal lattice, Let us congider
this hypothesis in more detail.

The thermodynamic potential for the soft branch along the ¢* axis can be written in the
form

D, = mcpcz + 5:9: &)

where o, is now the amplitude of the first two-component order parameters in the solid
solution.

For rational numbers of g, q; = m/! where m and ! are integers, we must add to the
potential (5), as was done in equation (4), the invariants o 0¥ cos(2¢.), where ¢ is the
phase of the order parameter. However, in the weak-anisotropy approximation which is
used here these invariants are small in comparison with the invariant 8,0} and we may
neglect them in what follows,

We suppose that only the coefficient e, (but not the coefficient 8.) depends on
temperature T and on the wavevector g,:

(g} = Ac + xc(g? — BYY? (6)
where the coordinates A, and B, of the minimum of the branch (6) depend on T linearly:
Ac=Ar(T-T,) B, = er T, 0

For the soft branch along the a* axis we use the same assumptions:

P, = Otapg + ﬁapi
e(ge) = Aa + Ka(g2 — BY)? (8)

Ag = AaT(T - Ta) B, = B,rT.

The full thermodynamic potential P is the sum of the two potentials (5) and (8) and it also
contains an interaction term which is proportional to the constantly existing invariant p;"pz

(a similar potential has been used previously; see [9]):
® = AP + Bepd + AuPl + Bupl + 2bp2p2. 9)

Here we replace «, by A, and o, by A.;. For an incommensurate phase it is possible
to do so, since the condition for the potential(s) (5) (and (8)) to be minimum is realized
by the equality . = B, (g, = B;). For a commensurate phase where g = g the term
k(g% — B:)? is small in comparison with A; owing to the weak-anisotropy approximation
and hence we may assume that &, = A, in what follows. To make the potential (9) finite
we must assume that . > 0, B, > 0 and B, 8, — b* > 0. We suppose also that b > 0.

With decreasing temperature the coefficient A, in the potential (9) first vanishes at
T = T, and the spontaneous value of the amplitude p. arises:

P2 = —Acf2B. O = —AlfAB+ Ap2 + Pup®  As = As — (B/B)A.- 10y
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A

Figure 4. Dependences of the coefficients A, As, Ag. A Aa and A, on temperature T (see
equation (11)-(13)).

As can be seen from equations (10), the coefficient of pf is renormalized owing to the
interaction term in the potential (9) and we obtain

A=A (T =T Aur = Agr — (B/Bo)Acr. ¢8))

The slope A,,T of the temperature dependence of A4 (T), although decreasing, remains
positive: 0 < Ayr < Agr and T, < T, (figure 4).

At T = T, the coefficient A, in the potential {10} vanishes in turn and the spontaneous
value of the amplitude p, arises in addition to the spontaneous value of p,:

pe=—Ac/2B, pi = —A/2B, Ao = A /(1 — b*/BBc)

- . . (12)
Ac=AJ(1 =P Buf)  Ac=A;— (b/B)Aa
Here both coefficients are renormalized and we obtain
tia = AaT(T - ﬁ:) Ac = "‘ECT(T - ’fc)
(13)

Ay = Aar /(1 — b*/BaBe) Agr = Aor /(1 = B%/BaBs).

However, now the slope Acr of the dependence A (T) and hence the slope Acr of the
dependence A(T), becomes negative: A < Ac-p < 0 (see figure 4). This supposes that
the condition A.r < Agrb/8, is fulfilled. Note that from a companson of the experimental
data presented in figures 2 and 4 of [8] we may conclude that the slope A,r is approximately
twice the slope AT,

At T = T, the spontaneous value of pc (12) vanishes and for T < T. we obtain

P2 = —Aaf2Bs. (14)

Thus, starting from the initial phase, we obtain: no ordering in the initial phase (T > Tc);
ordering along the ¢ axis in the range T, < T < T; both ordering along the @ and ¢ axes
in the range T, < T < T,; and ordering along the g axis only, for T < T..

Now we must superimpose these three second-order phase transitions at T =T, T = T,
and T = T, on the phase transitions which are connected with crossing boundaries between
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Figure 5. Part of the phase diagram on the (x..y.) plane near the point x, = % for the
solid solution with x = 0.12, The phase trajectory (two variants) with the re-eotrant behaviour
is shown by the broken arrow (compare with the phase diagram in figure 2 for the pure Br
compound).

Nl |

Y

Figure 6. Past of the phase diagram on the (x4, y,) plane in the vicinity of the points x, = £, 4

and % for the solid solution with x = 0.12. The phase trajectory is shown by the broken arrow
(compare with figure 3 for the pure Cl compound).

different incommensurate and commensurate phases by phase trajectories on the phase
diagrams (4., B.) and {4,, B,).

Figures 5 and 6 present parts of the phase diagrams (A., B.) and (A, B,), respectively,
in the dimensionless variables x. = B./Q and y. = Ac/k.Q%*(x, = B,/Q and y, =
Ag/r,Q%). These diagrams are plotted in such a way that the differences between them
and the similar phase diagrams for the pure compounds (see figures 2 and 3} are as smali
as possible while the agreement with available experimental data is as good as possible.
Note that the slopes of the phase trajectories on the diagrams in figure 5 and 6 correspond
to the slopes of the dependences on the coefficients A, A and A on T in figure 4. (Indeed,
for example, from equation (7) it follows that A, ~ B.Ar/B.r.) However, for simplicity,
only the kink at 7 = T, is shown in figure 5 and no kink is shown in figure 6.

In figure 5 we assume that €; = 0.3, i.e. it has the same value as for the pure compound.
The initial slope of the phase trajectory is chosen in such a way that it corresponds to the
dependence of the misfit parameter on temperature (see figure 2 in [8]). When this trajectory
crosses the boundary between the incommensurate phase and the commensurate phase with
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g, = % the phase transition between these phases occurs at T = T,

As follows from table 1, the phase transition from the initial phase (Pnma) into the
incommensurate phase along the ¢ axis (abéc) occurs at T = 77 and hence T} = T..
At T = T, the phase transition into the phase (£a b2c) is observed. Here we have
simultaneously two transitions: one from (a) to (¢a) at T = T, and the other from (Zc) to
(2¢) at T = T and hence T, = T!. The coincidence of two transitions is possible since one
of these transitions at 7 = T is of the first order. It is possible aiso that the temperatures
T, and T! do not coincide but are so close to each other that they are not distinguished
by experiment. In this case it would be possible to observe in the vicinity of 7 = T3 a
phase with the parameters (ab2c) if T, < T/ or (§abic}if T, > T U T =T, =T the
kink of the phase trajectory accordingly coincides with the crossing by the trajectory of the
boundary in figure 4. At this point the phase trajectory changes its direction from going
downwards to going upwards and the re-entrant part of the trajectory begins. In figure 5 we
show two variants of such a trajectory since both possibilities are not in contradiction with
the experimental data. A steeper slope of the trajectory is in greater agreement with the
data since the temperature range of the existence of the commensurate phase with g, = %
(19°; see table 1) is less than that of the incommensurate phase (27°; see table 1)

With further decreasing temperature the re-entrant trajectory in figure 5 crosses two
boundaries between the phases commensurate with g, = %, incommensuvrate and initial
with respect to the ordering along the ¢ axis, and two corresponding phase transitions occur.
However, as can be seen from figure 5, the range of existence of the incommensurate phase
is very narrow and this phase could hardly be observed in experiment. Then the transition
from (2¢) to (¢) occurs at T = T.. At T < T the ordering along the ¢ axis no longer exists
and the crystal returns to the initial symmetry with respect to this ordering.

The re-entrant behaviour of the trajectory in figure 5 can explain the unusual temperature
dependence of the integrated intensity of the satellite reflection (see figure 1 in [8]). This
intensity instead of increasing with decreasing temperature, reaches a maximum at 7 S Tp
and then begins to decrease down to zero level.

In figure 6 the initial slope of the phase trajectory is chosen in accordance with the
experimental dependence of the misfit parameter along a* on temperature (see figure 4 in
[8]). The values ¢; = 0.1 and €3 = 0.7 are chosen in such a way that the temperature ranges
of the existence of the incommensurate phase along the @ axis and of the commensurate
phase with g, = % correspond approximately to the experimental data i19° and 7°,
respectively (see table 1). Note that the choice of values for ¢, and €3 in figure 6 and
for ¢; in figure 5 is not so strict. Note also that experimental data of the phases in the range
Ty < T < Ty are not definitively established. Therefore in this consideration we neglect the
existence of the phase transition at T = T5.

As follows from table 1, at T = 7; we have simultaneously two transitions: one
from (2c) to (c) at T = T, and the other from (a) to (4a) at T = T, (cf the case of
phase transition at T = 73). Therefore T. = T! and the two transitions coincide. Such
a coincidence is possible since one of these transitions at 7 = T is of first order. It is
possible also that the temperatures T, and T, are so close to each other thai they are not
distinguished in experiment. In this case in the vicinity of T = T, some additional phases
could be observed, e.g. with the parameters (§a b c) and (Eabc) if T] < T; or (4ab2c)
and (dabic) if T, > T,.

T =1 = T,, the phase with the parametrs (4a b c) exists at < I, The space group
of this phase must be determined only by the soft branch along the a axis, i.e. it must be
the same as in the pure chloride compound, namely Pra2;(d4a bc), and it is exactly what
is observed in experiment (see table 1).
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The last phase transition occurs at T = 75 when the phase trajectory in figure 6 crosses
the boundary between the two commensurate phases with g, = 4i and g, = % The phase
at T < Ts must have the parametrs (3a bc) and the space growp P112;/a as in the pure
chloride compound which again coincides with experiment (see table 1).

4, Conclusion

Further experimental data are necessary to check the theoretical treatment given above, and
in particular experiments which should clarify the 73 and T; transitions. It would be also
very interesting to measure the phase diagram of solid solutions with different x, especially
with x less than 0.12. With decreasing x the phase transition temperatures T, and T,
in figure 4 become closer to each other and, at some critical value x = xq, they should
coincide. At x < xg, only ordering along the a axis occurs (figure 7). With decreasing x,
interactions between Br ions decrease and the long range order in the arrangement of Br
ions can be lost; then x = x1.. H xp. is less than xg, then on the (x, T) phase diagram the
tetracritical point must be observed on the phase transition line from the initial phase to the
lower temperature phases.

Figure 7. Dependences of the coefficients A, and A, or temperature T in the case x < xp {see
text).

In this point (x = xp), ordering along the ¢ axis no longer takes place. A similar
tetracritical point was observed for the [N(CH3)4]2CuBr,Cls_, solid solution (at x =~ 1.8
[1]). On the contrary, if x|, is greater than xg, then the tetracritical point cannot be observed
on the (x, T) phase diagram,
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