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UniversiM Montpellier 11, 34095 Montpellier C6dex 05, France 
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Ahstracr A theoretid interpretation of the transition sequences in the [P(CHl)alz 
(CuCb)~-,(CuBra). solid solution is proposed. Each pure compound [P(CH,)&CuC14 and 
[FYCH~)alzCuBra presents its own bansition sequence which contains an incommensurate phase 
and different locked phases. In the solid solution with x = 0.12, phases characteristic of the two 
pure compounds are observed in the sequence. The interpretation of this phase diagram is based 
on a coupling of the WO order parameters, each of them corresponding to their own phonon 
branch. This coupling results in a re-entrant symmetry for one of the two order parameters. in 
agreement with experimental data. 

1. Introduction 

Two questions arise when undertaking a study of phase transitions in AI-,B, solid solutions. 
The first concerns the homogeneity of the sample. As an example, if aggregates of B 
are present within the A matrix, then the properties of the sample can be described as 
a superposition of the properties of the two pure compounds. The second question is 
connected with the Occurrence of long-range ordering. There presumably exists a limiting 
concentration XL such that, for x > XL, long-range correlations take place between the 
molecules of the chemical species B. Then for x > XL the solid solution behaves like a pure 
crystal with respect to the properties of both species. For x c XL the sample will behave 
as a pure crystal for the properties of only species A, B acting as impurities. 

The phase diagram of the [ N ( C H ~ ) ~ ] ~ C U B ~ , C I ~ _ ,  solid solution gives an example of 
such a homogeneous compound where long-range ordering is present [I]. The homogeneity 
is demonstrated by the continuous dependence of the transition temperatures on composition. 
This phase diagram results from competition between the order parameters of the two pure 
salts. For some composition ranges, ordering occurs simultaneously in both symmetry 
directions, i.e. for the two order parameters. 

Analogous to the previous compound, [P(CH~)~]~(CUC~~),-~(CUBT~)~ where x = 0.12 
is also an interesting example of a solid solution. It exhibits a.complicated sequence of at 
least six phases between room temperature and 110 "C (table 1) 121. Some of these phases 
present the same space group as in the pure bromide and others the same space group as in 
the pure chloride compound. The case of the two pure compounds is described in section 2 

t Permanent address: Institute of Crystallography, Academy of Sciences, Leninsk Precinct 59. I17333 Moscow, 
Russia. 
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Table 1. Schematic represenlation of phase uansition sequences in the compound 
[P(CH~)~]Z(CUC~),-.(CUB~~)~ with different x ( x  = I is the pure Br compound; x = 0 is 
the pure CI compound). 

- _ .  
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of the present paper where we give the phenomenological interpretation of the transition 
sequences and compare them with available experimental data 

In the solid solution with x = 0.12, despite the low value of x ,  long-range ordering 
occurs simultaneously in the a and c directions which are characteristic of the CuC14 [3] and 
CuBro [4] species, respectively. Consequently a phenomenological theory of the transition 
sequence in this compound must take into account the order parameters of both the two 
pure salts. All through this work we use the language of lattice dynamics. The term 'soft 
mode' is used because it  gives an understandable description of the different situations. 
Nevertheless, one should keep in mind that the mechanism of the transition is perhaps not 
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of the displacive type. The phenomenological theory presented in section 3 for the solid 
solution applies to a pure crystal where two sets of order parameters are in competition. 

Finally a short discussion, containing an analysis of the results obtained within the 
present theory, is given in section 4. 

2. Phenomenological theory of the transitions in the pure compounds 

2.1. IP(CH3)rlzCuBrd 

From DSC measurements it was found that the high-temperature phase transition at about 
135" in [P(CH3)&CuBr4 was either of first order or continuous but close to tricritical point. 
Close to this temperature we obtained evidence of an intermediate incommensurate phase 
extending over a temperature range of about 3 K because of the presence in the free-energy 
expansion of a Lifshitz term [4]. 

Now we wish to improve the phenomenological treatment of phase transitions in this 
compound so as to interpret the whole transition sequence which includes four different 
phases. To achieve this we shall see that it is sufficient to consider the single soft optical 
branch of the normal vibration spectrum. 

The symmetry of this branch is unambiguously determined since the symmetry group of 
the low-temperature phase with the same translational symmetry (ubc) as in the initial phase 
Pnma (Dg) is known. It is P & / n l l  and it is induced by the representation B3g(y~) of the 
point group D z ~  (see, e.g., [5]). Therefore the coordinate of the mode with the wavevector 
q = 0 transforms with respect to the representation B3g. This determines the symmetry of 
the corresponding branch. From the tables of space groups of commensurate phases for the 
initial phase of the space group DiE [5]. it follows that the possible space groups of the 
phase with qc = f (p = q,c*) are P l & / q  or P21ca (also possible, but less probable, is 
the s o u p  Plcl). The first of these possibilities corresponds to the experimental data (see 
table 1 ) .  

The soft branch is represented by the simple expression 

a'(q) = A + K ( $  - BZ)' (1) 

where 01 is the elastic coefficient of the normal vibration associated to the branch, and A 
and B are coordinates of the minimum of the branch ( 1 )  (figure l(u)). 

The phase diagram obtained using the method proposed in [6,7], is shown in figure 2. 
Along the axes we plot the parameters A and B of the soft mode, i.e. of the minimum of 
the soft branch, in the dimensionless variables 

(2) 

Here Q has the dimension of a wavevector the value of which can be chosen arbitrarily. It 
is convenient to take it equal to the value of the Brillouin zone boundary Q = f (in units 
of c*). K characterizes the steepness of the branch in the .vicinity of the minimum (see 
figure I@)). 

Each commensurate phase, i.e. the phases corresponding to rational values of the 
wavevector ql = m / l ,  where m and 1 are integers, can be characterized by the dimensionless 
parameter 

4 
x = B f Q  y = - A / K Q  , 

61 = ( I ~ ; I / K Q 4 ) ( K Q 4 / 2 8 ) ' - '  (3) 
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Figure 1. (a) Optical soft branch, Figure 2. Phase diagram on the (x, y )  plane (see quation (2) in lhe 
i.e. the dependence of the elastic text) for lhe pure Br compound. The phase Vajectory with decreasing 
coefficient OL - m2 (o is the temperature is shown by the broken mow. The wavevectors of the 
frequency) on the wavevector q (in commensurate phases q = I / m ,  
units of 2x/c)  along the c' direction 
for lhe pure Br compound. (b) 
Optical soft branch showing the 
dependence of u(q) with q (in units 
2n/n) along the a' direction for the 
pure CI compound. 

which involves the coefficients of the thermodynamic potential for the rational values of 
ql = m J l :  

indicated. 

Q I  = alp2 + Bp4 - a;pu COS(U@) (4) 

where the elastic coefficient CUI depends on q according to equation (1): 

Cui = A + K(q: - B2)' 
and p and q5 are the amplitude and phase of the two-component order parameter, i.e. the 
coordinates of the two-degenerate mode of the branch (a(q) = a(-q)). Note that, the 
larger €1 is, the wider at a fixed value of Q is the range of existence of the corresponding 
commensurate phase in the phase diagram of figure 2 (see also figure 3). 

In figure 2 we use the value €2 = 0.3. The phase trajectory is chosen in such a way 
as to obtain the correspondence first to the observed sequence of phase transitions, second 
to the approximate ratio of temperature ranges of existence of the incommensurate phase 
(3 K) and of the commensurate phase with q = (204 K), and third to the dependence of 
the misfit parameter on temperature T in the incommensurate phase [2, 41 (q N 0.524 at Ti 
and at the lock-in transition it jumps from q Y 0.517 to q = 4). 
2.2. IP(CH3)dIZ CuC14 

Table 1 also shows the phase transition sequence in the compound [P(CH~)&~JCI~. 
According to tables in [5], such a sequence of phase transitions can be described by a 
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- - - - - - - - - - - - - - A  t, 
Figure 3. Phase diagram on the (x. y )  plane (see equation (2)  in the text) for the pure CI 
compound. The broken arrow indicates the phase trajeclory with decreasing temperature. 

single optical branch. The mode with q = 0. which belongs to this branch, can transform 
with respect to the representation either B3g ( y z )  or A,, ( x y z )  of the point group D?h, 
To these representations correspond the space groups P21 /nl  1 and P212121, respectively 
(with the equitranslational cell abc). However, up to now, no transition to a low-temperature 
equitranslational phase has been experimentally evidenced. 

The expression for the soft branch a(q) can be presented in the same form as before 
(equation (I)), but now all quantities are different (e.g. q = qxa*). The dependence a(q) 
is shown schematically in figure I(b). 

In figure 3 the phase diagram corresponding to this branch is given, It is plotted in the 
same way as for the diagram in figure 2. We use the following values of €1 (see (3) for a 
definition of € 1 ) :  €3 = 1, €2 = 0.2, €4 = 0.02 and c5 = 0.1. 

This choice is connected with the slope of the phase trajectory which corresponds to 
the experimental dependence of the misfit parameter on temperature in the incommensurate 
phase [3] (q cz 0.18 at I;; it increases to q N 0.26 at T, and jumps to the value q = 4). The 
phase trajectory crosses the commensurate phase with q = 4; however, this phase can be 
very narrow and on the scale of figure 3 has almost no width The trajectory also crosses 
the commensurate phase with q = i .  The value €4 = 0.02 was chosen to be so small that 
this phase is narrow in the diagram. However, in principle, this phase must be observed in 
experiment as some n m o w  plateau in the dependence q ( T ) .  

The space group of the phase with q = $, in accordance with the tables in [5 ]  can be 
either Pna21 or P 1 2 t / a l .  In the first case the electric field along the z axis must broaden 
the range of existence of the phase with q = $. Then this phase must be more reliably 
observed in experiment. 

3. Phenomenological interpretation of the transition sequence in a solid solution 

On the basis of table 1, one can guess that in solid solution with x = 0.12 a condensation 
of both order parameters, i.e. of the CI and of the Br compound, occurs. In the framework 
of our phenomenological interpretation, two soft phonon branches which are characteristic 
of the pure compounds simultaneously exist. Note that from symmetry considerations the 
symmetry group of a mixed phase contains only the common elements of the two original 
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symmetry groups. In this respect, as the low-temperature phase of the solid solution with 
x = 0.12 is the same as in the pure chloride compound, the influence of the bromide salt 
no longer applies in this temperature range. This means that the soft branch responsible for 
the c direction ordering condenses at high temperatures but in the low-temperature range 
the condensation of this mode no longer takes place. This can happen if the corresponding 
soft mode first decreases (and therefore the elastic coefficient becomes negative) and then 
increases (and the elastic coefficient again becomes positive). We suppose that this can 
occur owing to the interaction of the two branches of the crystal lattice. Let us consider 
this hypothesis in more detail. 

The thermodynamic potential for the soft branch along the c* axis can be written in the 
form 

(5) 

where pc is now the amplitude of the first two-component order parameters in the solid 
solution. 

For rational numbers of q ,  qr = m / l  where m and 1 are integers, we must add to the 
potential (5), as was done in equation (4). the invariants sip," COS(U@~), where @c is the 
phase of the order parameter. However, in the weak-anisotropy approximation which is 
used here these invariants are small in comparison with the invariant &p," and we may 
neglect them in what follows. 

We suppose that only the coefficient aC (but not the coefficient pC) depends on 
temperature T and on the wavevector qc: 

D G Sannikov et a1 

4 
@c = UcP: + BCP, 

(Yc(qc)  = AC + K&: - B:)' (6) 

where the coordinates A, and Bc of the minimum of the branch (6) depend on T linearly: 

A, = AC7(T - Tc) Bc = B,TT. (7) 

For the soft branch along the U* axis we use the same assumptions: 

A. = A.r(T - T.) B. = B u ~ T .  

The full thermodynamic potential 0 is the sum of the two potentials (5) and (8) and it also 
contains an interaction term which is proportional to the constantly existing invariant pzp; 
(a similar potential has been used previously; see [9]): 

@ =  A , P : + B , P , ~ + A , P , ~ + B , P , ~ + ~ ~ P Z P , Z .  (9) 

Here we replace cu, by A, and cu, by A,. For an incommensurate phase it is possible 
to do so, since the condition for the potential(s) (5) (and (8)) to be minimum is realized 
by the equality qc = Be (qa = Ea). For a commensurate phase where q = qci the term 
rC,(q:[ - BZ)' is small in comparison with A, owing to the weak-anisotropy approximation 
and hence we may assume that CY, = A, in what follows. To make the potential (9) finite 
we must assume that pc =. 0, pa > 0 and Bopc - b2 > 0. We suppose also that b > 0. 

With decreasing temperature the coefficient A, in the potential (9) first vanishes at 
T = Tc and the spontaneous value of the amplitude pc arises: 

(10) pf = -Ac/ZPc @ = -A:/4Bc + Lap: + Pop: & = A, - (b/Bc)Ac. 
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Figure 4. Dependences of the coefficients A,, A,, d., &,ria and ri, on temperature T (see 
equation (1 lt(13)).  

As can be seen From equations (lo), the coefficient of p," is renormalized owing to the 
interaction term in the potential (9) and we obtain 

2. = &T(T - E )  A,T =  an^ - (b/&)A,T. (11) 

The slope .&,T of the temperature dependence of d,(T), although decreasing, remains 
positive: 0 < &T < A o ~  and ?e < To (figure 4). 

At T = 5 the coefficient A, in the potential (10) vanishes in turn and the spontaneous 
value of the amplitude po arises in addition to the spontaneous value of pc:  

P," = -A./2Bn p,' -&/2Bc = &J(l - b 2 / A B c )  
(12) 

= &/U - b2/80Bc) = A, - (b/B.)A,. 

Here both coefficients are renormalized and we obtain 

A, = A,T(T - fa) 
&T = &/(1 - bZ/&B)  

A, = A,T(T - ?cl 
(13) 

&T = .&T/(I - b2/ABb).  

However, now the slope .&T of the dependence &(T)  and hence the slope d , ~  of the 
dependence .&(T), becomes negative: &T < &T < 0 (see figure 4). This supposes that 
the condition A,T < A,Tb/p, is fulfilled. Note that From a comparison of the experimental 
data presented in figures 2 and 4 of [SI we may conclude that the slope &T is approximately 
twice the slope A,T. 

At T = fc the spontaneous value of pc  (12) vanishes and for T < fc we obtain 

P,' = - A , / 2 8 .  (14) 

Thus, starting from the initial phase, we obtain: no ordering in the initial phase ( T  z Tc); 
ordering along the c axis in the range To < T < T,; both ordering along the a and c axes 
in the range 'fc < T < fa; and ordering along the a axis only, for T c fc. 

Now we must superimpose these three second-order phase transitions at T = T,, T = fa 
and T = Fe on the phase transitions which are connected with crossing boundaries between 
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T 
I' 

I c 
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t 
Figure 5. Pan of the p h a e  diagram on the (x,. yc)  plane near thc point xc = f for the 
solid solution with x = 0.12. The phase mjectog (WO varianfs) with the re-entrant behaviour 
is shown by the broken arrow (compare with thc phase diagram in figure 2 for the pure Br 
compound). 

Figure 6. Pm of the phase diagram on the [x,,, yn) plane in the vicinily of the points .ro = 4, i 
and 5 for the solid solution with x = 0.12. The phase mjectory is shown by the broken mow 
(compare with figure 3 for the pure C1 compound). 

different incommensurate and commensurate phases by phase trajectories on the phase 
diagrams (Ac,  B,) and ( A n ,  E,). 

Figures 5 and 6 present parts of the phase diagrams (Ac,  &) and ( A u ,  E"), respectively, 
in the dimensionless variables xc  = E J Q  and yc = A,/K,Q'(x, = E o / Q  and ya = 
A . / K , Q ~ ) .  These diagrams are plotted in such a way that the differences between them 
and the similar phase diagrams for the pure compounds (see figures 2 and 3) are as small 
as possible while the agreement with available experimental data is as good as possible. 
Note that the slopes of the phase trajectories on the diagrams in figure 5 and 6 correspond 
to the slopes of the dependences on the coefficients A, d and d on T in figure 4. (Indeed, 
for example, from equation (7) it  follows that A, - E c A , ~ / E c r . )  However, for simplicity, 
only the kink at T = fa is shown in figure 5 and no kink is shown in figure 6. 

In figure 5 we assume that €2 = 0.3, i.e. it has the same value as for the pure compound. 
The initial slope of the phase trajectory is chosen in such a way that it corresponds to the 
dependence of the misfit parameter on temperature (see figure 2 in [SI). When this trajectory 
crosses the boundary between the incommensurate phase and the commensurate phase with 
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qe = &, the phase transition between these phases occurs at T = T:. 
As follows from table 1, the phase transition from the initial phase (Pnma) into the 

incommensurate phase along the c axis (ab {c)  occurs at T = TI and hence T, = T,. 
At T = Tz the phase transition into the phase (&62c) is observed. Here we have 
simultaneously two transitions: one from (a) to ($a) at T = fa and the other from (Cc) to 
(2c) at T = T,' and hence fa = T,'. The coincidence of two transitions is possible since one 
of these lransitions at T = Ti is of the first order. It is possible also that the temperatures 
f and T,' do not coincide but are so close to each other that they are not distinguished 
by experiment. In this case it would be possible to observe in the vicinity of T = TI a 
phase with the parameters (a b2c) if p, < T,' or (cab Fc) if fa > Ti. If Tz = fa = Ti the 
kink of the phase trajectory accordingly coincides with the crossing by the trajectory of the 
boundary in figure 4. At this point the phase trajectory changes its direction from going 
downwards to going upwards and the re-entrant part of the trajectoly begins. In figure 5 we 
show two variants of such a trajectory since both possibilities are not in contradiction with 
the experimental data. A steeper slope of the trajectory is in greater agreement with the 
data since the temperature range of the existence of the commensurate phase with qc = 
(19"; see table 1) is less than that of the incommensurate phase (27"; see table 1). 

With further decreasing temperature the reentrant trajectory in figure 5 crosses two 
boundaries between the phases commensurate with qc = 1, incommensurate and initial 
with respect to the ordering along the c axis, and two corresponding phase transitions occur. 
However, as can be seen from figure 5, the range of existence of the incommensurate phase 
is very narrow and this phase could hardly be observed in experiment. Then the transition 
from (2c) to (c) occurs at T = fc. At T < fc the ordering along the c axis no longer exists 
and the crystal returns to the initial symmetry with respect to this ordering. 

The reentrant behaviour of the trajectory in figure 5 can explain the unusual temperature 
dependence of the integrated intensity of the satellite reflection (see figure 1 in [8]). This 
intensity instead of increasing with decreasing temperature, reaches a maximum at T 5 T2 
and then begins to decrease down to zero level. 

In figure 6 the initial slope of the phase trajectory is chosen in accordance with the 
experimental dependence of the misfit parameter along a* on temperature (see figure 4 in 
[SI). The values €4 = 0.1 and 63 = 0.7 are chosen in such a way that the temperature ranges 
of the existence of the incommensurate phase along the a axis and of the commensurate 
phase with qu = 4 correspond approximately to the experimental data 19" and 7", 
respectively (see table 1). Note that the choice of values for €4 and €3 in figure 6 and 
for €2 in figure 5 is not so strict. Note also that experimental data of the phases in the range 
T4 < T < T2 are not definitively established. Therefore in this consideration we neglect the 
existence of the phase transition at T = T,. 

As follows from table 1, at T = T4 we have simultaneously two transitions: one 
from (Zc) to (c) at T = f, and the other from (ca) to (4a) at T = Ti (cf the case of 
phase transition at T = T2). Therefore fc = Ti and the two transitions coincide. Such 
a coincidence is possible since one of these transitions at T = Td is of first order. It is 
possible also that the temperatures fc and Ti are so close to each other that they are not 
distinguished in experiment. In this case in the vicinity of T = T4 some additional phases 
could be observed, e.g. with the parameters ((a b Fc) and (ca 6 c) if Ti < fc or (4n b 2c) 
and (4n b [c) if Ti > fc. 

If T4 = fc = Ti. the phase with the parametrs (4a b c) exists at < T4. The space group 
of this phase must be determined only by the soft branch along the a axis, i.e. it must be 
the same as in the pure chloride compound, namely Pna21(4ubc), and it is exactly what 
is observed in experiment (see table 1). 



858 D G Sannikov et a1 

The last phase transition occurs at T = Ts when the phase trajectory in figure 6 crosses 
the boundary between the two commensurate phases with q,, = 4 and q. = 5. The phase 
at T c Ts must have the parametrs (3a b c )  and the space group P 1121/a as in the pure 
chloride compound which again coincides with experiment (see table 1). 

4. Conclusion 

Further experimental data are necessary to check the theoretical treatment given above, and 
in particular experiments which should clarify the T2 and T3 transitions. It would be also 
very interesting to measure the phase diagram of solid solutions with different x ,  especially 
with x less than 0.12. With decreasing x the phase transition temperatures Tc and To 
in figure 4 become closer to each other and, at some critical value x = XO, they should 
coincide. At x < xo, only ordering along the a axis occurs (figure 7). With decreasing x, 
interactions between Br ions decrease and the long range order in the arrangement of Br 
ions can be lost; then x = XL. If XL is less than xo, then on the ( x ,  T) phase diagram the 
tetracritical point must be observed on the phase transition line from the initial phase to the 
lower temperature phases. 

Figure 7. Dependences of the coefficients A, and A, on temperature T in the case x c xi, (see 
lext). 

In this point (x  = xo), ordering along the c axis no longer takes place. A similar 
tetracritical point was observed for the [ N ( C H ~ ) & C U B ~ ~ C I ~ - ~  solid solution (at x N 1.8 
[l]). On the contrary, if .q is greater than x ~ .  then the tetracritical point cannot be observed 
on the ( x ,  T) phase diagram. 
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